
501 

Interpolation in Digital 
Modems-Part  I: Fundamentals 

Floyd M. Gardner, Fellow, IEEE 

Abstrucf- Timing  adjustment  in  a  digital  modem  must  be 
performed  by interpolation  if  sampling is not  synchronized to 
the  data  symbols. This paper  describes the fundamental  equation 
for interpolation,  proposes  a  method for control,  and  outlines  the 
signal-processing  characteristics  appropriate  to an interpolator. 
The material  combines a review  of  previously  known  topics, 
presentation of new  results, and a tutorial  exposition of the 
subject. 

A companion  paper  will  treat  performance  and  implerneuta- 
tion. 

T 
I. INTRODUCTION 

IMING in a  data  receiver  must be synchronized to 
the  symbols of the  incoming  data  signal. In analog- 

implemented  modems,  synchronization  typically is performed 
by a  feedback  loop  that  adjusts  the  phase of a  local  clock, or 
by a  feedfonvard  arrangement that regenerates  a  timing  wave 
from  the  incoming  signal.  The  local  clock or the  timing  wave 
is used to  sample (or strobe) the filtered output of  the modem, 
once per symbol  interval.  Message  data  are  recovered  from 
the  strobes.  Timing of  the strobes  is  adjusted  for  optimum 
detection of the  symbols. 

Implementation of the modem by digital  techniques (a topic 
of intense  present  activity)  introduces  sampling of the signal, 
In some  circumstances,  the  sampling  can be synchronized 
to  the  symbol  rate of the  incoming  signal;  see Fig. l(a) 
and (b). Timing  in  a  synchronously  sampled modem can be 
recovered  in much the  same  ways that are  familiar  from  analog 
practice. 

In other  circumstances, the sampling  cannot  be  synchronized 
to the  incoming  signal.  Examples  include I) digital  processing 
of unsynchronized  frequency-multiplexed  signals, or 2) non- 
synchronized  digital  capture and subsequent  postprocessing of 
a  signal. For one  reason or another,  the  sampling  clock  must 
remain  independent of the  symbol  timing.  See Fig. l(c) for a 
nonsynchronized-sampling configuration. 

How is receiver  timing to  be adjusted, by digital  methods, 
when it is not possible  to alter the  sampling  clock?  One  answer 
is  to interpolate among  the  nonsynchronized  samples in such 
manner  as to produce  the  correct  strobc  values at  the  modem 
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Fig. 1 .  Timing recovery methods. 

output-the same  strobe  values  that would occur if the  original 
sampling had been  synchronized  to  the  symbols. 

Interpolation is a  timing-adjustment  operation  on  the  signal, 
not on  a  local  clock  or  timing  wave. In this respect,  it 
is radically  different  from  timing  adjustment  in  the  better- 
known  analog  modems. Of all the  operations  in  a  digitally 
implemented  modem,  interpolation is perhaps  the  one  with 
the least  resemblance  to  established  analog  methods. 

Several  issues  arise  as  follows. 
-What mathematical model of interpolation  can  be  de- 

-How is  interpolation  to  be  controlled? 
-What characteristics  are  desirable  in an interpolator  for 

-How is  the  interpolator  to  be  implemented? 
-What performance  can be obtained? How large  is  the 

-What conceptual  model  is  appropriate  for  interpolation? 
These  are the matters treated  in this paper and its companion 

[l]. The first three  issues  are  addressed  here in Part I, and the 
last three  in  Part I1 [l]. Attention  is  concentrated  on high- 
speed methods, defined  by a  hardware-imposed  constraint  that 
no  clock  frequency can greatly  exceed  the  signal  sample rate. 

vised? 

modems? 

computing  burden? 
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11. BACKGROUND 
Interpolation  as  a  Digital  Signal  Processing  (DSP)  opera- 

tion has  been  covered  extensively in the literature; excellent 
examples and further  references may be  found in [2] and [3 ] .  
By contrast, the role of interpolation in timing  adjustment has 
had comparatively  meager  attention  [2,  ch. 61, [4], [5]. In fact, 
these latter references  do not speak of “interpolation”, but of 
“digital  phase  shifting” [2, ch. 61 and [4], or of “sampling-rate 
conversion” [2, ch. 21 and [5 ] .  

It will be seen  presently that the  process of timing  adjust- 
ment  includes  substantially  more than interpolation  alone and 
that  “rate  conversion”  is  a  more  accurate label. Nonetheless, 
we will  apply the  term “interpolation” to denote all of  the 
processes  that  are  involved  in  adjustment of timing. 

The  term  “interpolation” to describe  the  entire  timing- 
adjustment  process  appears  to  have  been  published first by 
a  group at the  Technical  University of Aachen [6], [7 ] .  The 
term is also used by Bingham [8, p. 1671. 

In light of the extensive  DSP  literature  on  interpolation, 
and of the  large  number of digitally  implemented  modems 
that have  been  built  for  voice-frequency  telephone-line  service, 
how is it  that the  literature  on  digital  timing  adjustment is so 
sparse? 

Authors in the  established  DSP  literature  almost  invariably 
restrict themselves  to  sampling-rate  conversion by a  rational 
factor,  which  can  be  modeled  as  a  cascade of interpolation 
and decimation,  each by integer ratios. Thus,  the  output is 
synchronized  to  the  input. 

But the  inherent  problem of fully  digital  timing  adjustment 
is  that  the  signal  sampling is not  synchronized  to  the  symbol 
timing;  the two rates  are incommensurute and the  sample  times 
never  coincide  exactly  with  desired  strobe  times.  Recognition 
of incommensurability  is vital to understanding  the  timing- 
adjustment  problem. 

Limitations of the  DSP  literature  aside, why didn’t the 
timing  adjustment  problem  arise  more  clearly in  the design 
of digitally  implemented  telephone-line  modems?  The  answer 
is that it indeed did arise, and was  solved by the adaptive 
equalizers  that play so large  a role in  those  modems.  Besides 
correcting  for  transmission  dispersion, an equalizer  almost 
incidentally  also  corrects  the  timing. For that  reason,  timing 
adjustment itself does not appear  as a widely  recognized, 
distinct  problem in the  context of telephone-line  modems. 

Digital  implementation  is  now  coming  to  higher  speed  com- 
munications  links  which  do  not  require  adaptivc  equalization. 
The need for  digital  timing  adjustment  must be faced by itself, 
without  embedding it inside an equalizer. 

111. MODEL 

A. Timing Loop 

Consider  the  feedback  timing  recovery of Fig. 2. (Feedfor- 
ward interpolation  is  also  feasible, but  not considered  here.) A 
time-continuous, PAM signal x ( t )  is  received.  Symbol  pulses 
in z ( t )  are  uniformly  spaced at intervals T .  For simplicity, ~ ( t )  
is  assumed to  be a real, baseband  signal, but those  restrictions 
can  be  removed  without difficulty. 

DLTLCTOR 

SAHPLL 

I I 

CONlROLLiR I 

Fig. 2. Elements of digital timing recovery. 

Assume z ( t )  to  be bandlimited so that it can be sampled 
at a  rate l /Ts  without  aliasing. If x ( t )  is not adequately 
bandlimited,  aliasing  will  introduce  distortion that causes 
a  performance  penalty.  Interpolation is not  an  appropriate 
technique to be  applied  to  wide-band  signals. 

Samples z(mT,) = z(m) are  taken at uniform  intervals 
T,. The  ratio T/Ts  is  assumed  to  be irrational, as  indeed  will 
be  true in all practical  situations  where  the  symbol  timing 
is  derived  from  a  source that is  independent of the  sampling 
clock.  These  signal  samples  are  applied  to  the  interpolator, 
which  computes interpolants, designated y(kTi) = y(k) at 
intervals Ti. We assume that Ti = T / K  where K is  a  small 
integer. 

The data filter employs  the  interpolants  to  compute  the 
strobes that are used for  data and timing  recovery. 

In the  sequel,  the  interval Ti between  interpolants  is  treated 
as  a  constant,  for  simplicity of explanation. A practical  modem 
must be able  to  adjust  the  interval so that the  strobes  can  be 
brought  into  synchronism  with the data  symbols of the signal; 
thus,  the  interpolation  interval  cannot  be  constant. 

All elements  within  the  feedback  loop  contribute  to the 
synchronization  process.  Timing  error is measured by the  tim- 
ing  error  detector  and filtered in the loop filter, whose  output 
drives the controller.  The  interpolator  obtains  instructions  for 
its computations  from the controller. 

This  paper  concentrates on  the interpolator and controller 
alone,  with little or no consideration of the  data filter, the 
timing  error  detector, or the  loop filter. One  example of digital 
timing-error  detectors may be  found  in [9], which  also  has 
references to other  examples. A n  illustrative loop  design and 
simulation may  be found in Part 11 [l]. 

The  data filter is shown  within the feedback  loop,  after the 
interpolator.  That  placement is not essential;  the  data filter 
could be outside of the  loop,  prior  to the interpolator. A data 
filter inside the feedback loop introduces  delay, with adverse 
influence on loop stability. 

Post placement may be  advantageous  when  the  data filtcr 
is more  complicated  than the  interpolator-a likely  situa- 
tion-and when  a  relatively high sampling  rate  is  employed  for 
interpolation. With postplacement, the data filter can  decimate 
its output  to  the  required  strobe  rate (just one or two samples 
per symbol) and thereby  save  on  computing  burden. If the data 
filter is  placed  before  the  interpolator,  then  the  sample rate 
out of  the data filter must be maintained  high  enough to avoid 
aliasing. On the  other  hand,  simulation  results 111 indicate  that 
quite  modest  sampling  rates  provide  excellent results, even 

1 
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Rerampla 
o t  t = k Ti 

Fig. 3. Rate conversion with time-continuous filter. 

with  very  simple  interpolators.  Thus,  post  placement may  not 
often be necessary. 

B. Interpolator  Equations 

To derive  a  model  for  the  interpolator, we recapitulate  the 
fundamental  development of Crochiere and Rabiner [2, ch. 21. 
The  same  basis  underlies  the  adaptive  rate  convertor in [5].  

Refer to Fig. 3, which  shows  a fictitious, hybrid ana- 
logdigital method of rate  conversion.  Convert  the  samples 
to a  sequence of weighted  analog  impulses,  which  are  applied 
to  a  time-continuous,  analog,  interpolating  filter  with  impulse 
response h l ( t ) .  The  time-continuous  output of the filter is 

~ ( t )  = C z ( m ) h r ( t  ~ mT,). (1) 

Observe  that y( t )#z( t ) .  There is no attempt, and no  need to 
recover  the  original  waveform,  contrary  to  most  conventional 
interpolation.  Since  a  modem  is  required  to  perform filtering 
of signals  there  is no reason  why  some of the filtering cannot 
be  included  in  the  interpolator. 

Now  resample y ( t )  at time  instants t = kT,  where T, is 
synchronized  with  the  signal  symbols. In general, T;/Ts is 
irrational; the  sampling and symbol  rates  are  incommensurate. 

The  new  samples-the interpolants-are represented by 

m 

y ( k T ; )  = Cz(mT,)hr(kT; - mT,). (2) 

Although  the  model  includes  a fictitious DAC and a fictitious 
analog filter, the interpolants in (2) can be computed  entirely 
digitally  from  knowledge of: 1) the  input  sequence { ~ ( r n ) } ,  
2)  the  impulse  response hr(t) of the interpolating filter, and 3 )  
the  time  instants mT, and kTi of the  input and output  samples. 
These  digitally  computed  interpolants  have  identically the 
same  values  as if the  analog  operations had been  performed. 

A more  useful  format  is  obtained by rearranging the index- 
ing in (2). Recognizing that m is  a  signal  index, define a  filter 
index 

m 

1; = int[kTi/T,] - m (3 )  

where  int[z]  means  largest  integer  not  exceeding z. Also, 
define  a  basepoint  index 

?iLk = int[kTi/T,] (4) 

and a  fractional  interval 

p k  = kT; /T ,  - mk (5 )  

where 0 5 ,uk < 1. Timing  relations  are  illustrated in Fig. 4. 
Function  arguments in (2) become m = mk - i and 

( kT i  - mT,) = (i + pk)T,,  and the  interpolant  is  computed 
at time kT; = (mk + &)T,. Equation (2) can be  rewritten  as 

Y(kTz) = y[(mk + Pk)Ts] 
1 2  

= Z[(mk - i )Ts]hl[( i  + / I k ) T s ] .  (6)  
i = I ,  

Equation (6) is the  foundation of digital  interpolation  in 
modems. 

If the  interpolating filter has finite impulse  response  (FIR), 
then 11 and 12 are fixed, finite numbers and the  digital filter 
actually used for computing  the  interpolants has  I = I, -11 + 1 
taps. 

At this point,  most DSP accounts of interpolation  assume 
that the ratio T,/T, is  rational. No such  assumption  will 
be made  here;  real-world  symbol  rates  are  almost  never 
synchronous  with  independent,  fixed-rate  sampling  clocks. 
Assuming  a  commensurate  ratio  tends  to  obscure  broadcr 
issues of control and implementation. 

When Ti is  incommensurate  with T,, the  fractional  interval 
p k  will be irrational and will  change  for  each  interpolant. If 
determined  to infinite precision, p k  takes  on  an infinite number 
of values,  which  never  repeat  exactly.  This  behavior is contrary 
to that observed if Ti is  assumed very  nearly equal to T,-if 
sampling is nearly  synchronized.  Then jhk changes  only very 
slowly; if is  quantized, it might  remain  constant  over many 
interpolations. If T, were  commensurate  with Ti, but  not equal, 
then p,k would  cyclicly repeat a finite set of values,  when  the 
timing  loop is in equilibrium. 

IV. CONTROL 

Fig. 5 presents  the  timing  loop of Fig. 2 with  expanded  detail 
for  the  controller.  The  interpolator  performs  the  computations 
of (6). The  controller  provides  the  interpolator  with  infor- 
mation  needed to perform  the  computations.  Other  essential 
elements in the  loop  will not be  treated here. 

An interpolant  is  computed  from (6) using I adjacent 
samples x ( m )  of the  signal  and I samples of the  impulse 
response h l ( t )  of  the interpolating filter. The  correct  set of 
signal  samples is identified by the basepoint  index mk and 
the correct  set of filter samples is identified by the  fractional 
interval p k .  Thus,  the  controller of  Fig. 5 is responsible  for 
determining mr; and ,uk, and making that information  available 
to  the interpolator. 

Once m k  and /Lk have  been  identified by the controller,  then 
other  elements  load  the  selected  signal and impulse-response 
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Fig. 5 .  Timing processor 

samples  into the interpolation filter structure for computations. 
These  loading  operations are regarded as part of the filter 
implementation; some  options  are examined  in Part 11 111. 

The necessary control can  be provided by a number- 
controlled oscillator (NCO). Assume that the signal samples 
are uniformly clocked through a shift register at  rate l/Ts and 
that the NCO  is clocked at a rate synchronized to l/T3. 

Provided  that the interpolator is never called upon to per- 
form upsampling,  then  the NCO clock period can be T,. If 
upsampling is  ever required, then a higher NCO clock rate is 
needed. Further discussion will concentrate on NCO clocking 
at rate l /Ts  (downsampling only); modifications needed to 
accommodate upsampling are readily devised once  thc basic 
principles are established. 

The  NCO  is operated so that its average period is Ti. 
Recycling of the NCO register indicates that a new interpolant 
is to be  computed, using the signal samplcs currently residing 
in the interpolator's shift register. Thus, basepoint index is 
identified  by flagging the correct  set of signal samples, rather 
than explicitly computing mk. 

A. Extraction of /Ik 

Fractional interval j l k  can  be calculated from the contents of 
the NCO's register upon recycling, as will now be explained. 

Designate the NCO register contents computed  at the mth 
clock tick as ~ ( m ) ,  and  the NCO control word as W ( m ) .  Then 
thc  NCO difference equation is 

q(m,) = [ ~ ( m  - 1) - W ( m  - l)]mod-1. (7) 

(A decrementing NCO is  employed  because it affords a 
minor simplification in  computation  of /LA. as compared to an 
incrementing NCO.) 

Control word W ( m )  [a positive fraction] is adjusted by the 
timingrecovery  loop so that  output of the data filter is strobed 
at near-optimal timing. Under loop equilibrium conditions, 
W ( m )  will be nearly constant. Contents of the NCO register 
(also a positive fraction) will be  decremented  by an amount 
W ( m )  each T, seconds and thc register will underflow each 
l / W ( m )  clock ticks, on average. Thus, the NCO period is 
Ti = T,/W(m) and so 

TS W(m,)  CY -. 
Tt (8) 

................. .l(rnk"l 

\ 

Fig. 6. NCO relations 

That is to say, W ( m )  is the synchronizer's  estimate of the 
average frequency of interpolation l /T i ,  expressed relative 
to the sampling  frequency l/Ts. The control word is an 
estimate because  it is produced from filtering of multiple, noisy 
measurements of timing  error. 

To see how jLk can be extracted from the NCO, refer to Fig. 
6, which is a plot  of (fictitious) time-continuous q( t )  versus 
continuous time. In the figure, mkT, is the time of the sample- 
clock pulse immediately preceding  the  kth interpolation time 
ICT, = ( m k  + p k ) T S .  NCO register contents decrease through 
zero at t = kT;, and the zero  crossing (underflow) becomes 
known  at the next clock tick at time ( m k  + l)Ts.  Register 
contents ~ ~ ( r n k )  and q ( m k +  1) are available at the  clock ticks. 

From similar triangles in Fig. 6, it can be  seen that 

l I k T I ;  (1 - jLk)Ts  

I / ( V l k )  1 - 1](7r6k + 1) 
-- 

which can be solved for f i k  as 

An estimate for  can be obtained by  performing the indi- 
cated division of the two numbers q ( m k )  and W ( r n k )  that are 
both available from the NCO. [Equation (9) is an estimate of 
the exact /& because  its constituents W(mk) and q ( m k )  are 
both estimates of the true frequency and  phase.] 

To avoid division, recognize that l /W(m) 2 T,/T,;  nom- 
inal value of this ratio is designated &,. Although the exact 
T,/T, is unknown  and irrational, the nominal value (0, ex- 
pressed to finite precision, can  often  be an excellent approxi- 
mation to the true value. Therefore, the fractional interval can 
be  approximated by 

PA- '" EOq(mk). (10) 

Represent the deviation in ( 0  from the true ratio of periods 
as A<. This deviation causes a uniformly distributed error with 
standard deviation A [ / ( [ o ~ )  in the calculated value of p k .  
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If the deviation of 50 is  too  large,  then  a first order  correction 

pk 2 <O?(mk)[2 - <OW(mk - 111 (11) 

reduces  the  standard  deviation in p k  to L I [ ~ / ( [ : ~ ) ,  again 
without  requiring  a  division. 

Timing  errors  arising  from  multiplying by the  nominal <,J 
using (10) instead of dividing by the  exact W ( m )  using (9) 
cannot  accumulate;  the  feedback  loop  removes any constant 
error  or  trend. 

B. Interpolation  Jitter 

Although  the  kth  interpolation  is  computed  for  a  time kT; = 
(mk + p k ) T s ,  the  interpolant  is  actually  delivered  coincident 
with  a  clock  tick no earlier  than (mk + l)Ts. Therefore, the 
output  exhibits  a  timing jitter with  peak-to-peak  fluctuations 
of T,, even if the  sampling  clock and received  symbol  rate 
are  entirely  jitter free. 

Timing jitter may  be inconsequential if the  received  data 
are  consumed at the  receiver  location.  A  timing  clock is 
provided by underflows of the NCO. Underflow  marks  give  an 
indication of correct  data  clocking  to any downstream  devices 
because  they  have  the  same  jitter  as  the  data. 

But  often  the  data  must  be  retransmitted  over  a  synchronous 
link  to  a  remote  consumer.  The underflow marks  usually 
cannot  be  retransmitted  along  with the data.  Unless jitter is 
removed  before  retransmission,  the  jitter  will be transmitted 
on the  data  stream. 

Auer [lo] has  pointed  out  that  a  near jitter-free clock  can 
be retrieved  from  the NCO and  used to  reclock  the  data  before 
retransmission.  His  scheme  employs  the  contents 7 / ( 7 n )  of 
the NCO register  in  a  direct  digital  frequency  synthesizer. 
At each NCO clock tick, the register  contents  are used to 
address  a  table of sines  to  produce  a  sample sin 2~q(m). 
These  sine  samples  are  applied  to  a  D/A  convertor and then 
filtered to yield  an analog,  low-jitter  sinewave  with  frequency 
1/Ti = K / T ,  from  which  a  symbol-rate  clock  can  be  derived. 

C. Alternative  Control  Methods 

An NCO is  not  the  only  possible  control  structure. An 
alternative,  suggested by M. Moeneclaey,  is  described  in 
Appendix  A. 

V. FILTER PROPERTIES 

What  properties  are  desirable in the  interpolating filter’s 
impulse  response hr(t)  or equivalently,  via  Fourier  transfor- 
mation,  in  its  transfer  function Hl(f)? Take heed  that  the 
properties  sought  are  those of the fictitious analog filter, despite 
the  fact  that all physical  operations  are  performed digitally. 

A. Duration of Impulse  Response 

In general, new filter coefficients  [samples of h l ( t ) ]  must 
be  reloaded  or  recomputed  for  each  interpolation.  The  frac- 
tional  interval pk-which specifies  the  filter-coefficient  sample 
values-never repeats if T, and T, are  incommensurate. 

If the filter has finite impulse  response  (FIR),  then I filter 
coefficients and I signal  samples  must be delivered  to the filter 
structure  for  each  interpolation. 

If an infinite impulse  response  (IIR) filter were  employed, 
a  recursive  structure would be  required so that  the computing 
effort  could be finite. L e t  the filter have p poles and z zeros. 
Then  for  each  interpolation it would be necessary to load  the 
following  information to be  able  to  compute  the  interpolant: 

-11 + z + 1 filter coefficients,  as  specified by &. 
-z + 1 signal  samples. 
-p past  outputs of the filter, calculated with the present 

value of  jLk. 
But those  past  outputs  cannot be  known for the present 

pk unless they were  computed  for all possible  values of pk 
at every  interpolation instant. That  would  ordinarily  be an 
unacceptable  computing  burden  and so FIR filters are usually 
preferred. 

Other  reasons  for  selecting FIR filters have  been  given in 
[31. 

B. Ideal  Interpolation 

It is well  known [3] that the  bandlimited  input  signal ~ ( t )  
(or its samples { z (kT; ) }  at times t = kT,)  could be recovered 
from  the  samples {z(mT,)} by using  the  ideal filter with 
impulse  response 

and transfer  function 

The  ideal filter is IIR and noncausal; it cannot be realized 
and so perfect  recovery of x ( t )  is not  possible  with  any 
practical filter. Failure of a  realizable filter to reconstruct ~ ( t )  
would be charged  as  distortion in conventional  applications of 
interpolation. 

But perfect  recovery is not required  from an interpolator 
in a  modem. It is only  necessary  that  the filtered strobe 
outputs of the modem  have  the  correct values-a much  less 
stringent  requirement than perfect  reconstruction of z ( t ) .  An 
interpolating filter in a  modem need  not be  nearly so precise 
as some of the  optimized  interpolators  found in the  DSP 
literature, such  as in [3]. 

Practical  demands on the  interpolation filter can  be  explored 
by considering its frequency  response Hl(f). 

C. Stopband  Response 

The  spectrum of the  signal  samples  has  periodic  images, 
spaced at a  frequency  interval 1/Ts. See Fig. 7. An inter- 
polation filter is  required to suppress  those  images  prior  to 
resampling. Any image  energy that is not  suppressed  will be 
aliased by resampling  and, if the  sampling and symbol  rates 
are  incommensurate, will constitute  random  interference  to the 
output  sequence {y(k)}. 

An ideal  interpolation filter completely  suppresses all input 
frequency  components  above 1/2T, and the  same  stopband 
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b) Spedrurn of r(mlS) 

d) Folded Spectrum 01 y ( k T , )  

Fig. 7. Signal spectra. 

behavior is  desirable in a practical interpolation filter.  Of 
course, no realizable filter  can provide infinite attenuation over 
an entire stopband. Therefore, any practical filter  will introduce 
some penalty because of incomplete suppression of images. 

Fig. 7 illustrates spectra of various  signals in the modem. 
The  top line of the figure shows the bandlimited spectrum 
of the input signal ~ ( t ) .  Sampling  generates periodic spectral 
images, as in the second line. Absence of aliasing is indicated 
by the non-overlap of the images. 

The  time-continuous inlerpolating filter attenuates the im- 
ages in varying degree, so that the spectrum of y(l)-the 
third line-consists of a main lobe around zero frequency, plus 
partially suppressed images  at all integer multiples of l/Ts. 

Upon resampling at rate l/Tz, all residual images fold in 
onto the desired signal. Fig. 7(d) sketches that  part of the 
spectrum (not to scale) lying in the vicinity of zero frequency. 
The actual spectrum repeats with a period of l/Tz. If T, /Ts  is 
irrational, the folded images are uncorrelated with the desired 
signal and will  impair recovery of the data. Relative power 
in the folded images, or equivalently, image attenuation by 
H l ( f ) ,  is a measure  of the adequacy of the stopband response 
of the filter. 

without penalty by other linear filters in the system. 
This relaxation in the passband means that interpolating 

filters for use in modems can have much less stringent re- 
quirements than would be imposed  upon interpolation filters 
that attempted to recover the orginal time function ~ ( t ) .  The 
passband filtering allowable in a modem interpolator is not 
counted as distortion. 

VI. CONCLUSION 

If sampling in a digital modem is  not synchronized with 
the data  symbols, timing must be adjusted by interpolating 
new samples  among the original ones. “Interpolation” is 
really a more-involved process that combines interpolation and 
subsequent decimation by resampling. 

A useful conceptual model includes a digital-to-analog 
convertor, an analog, time-continuous interpolating filter, and 
a resampler, all fictitious, to  produce the desired intcrpolants. 
Exactly the same interpolants can be computed entirely dig- 
itally from the input samples  and  knowledge of the sampled 
impulse response of the fictitious analog filter.  Equation (6) 
underlies interpolation operations in digital modems. 

An individual interpolant is specified by the signal samples 
(the basepoint set) that contribute to its value, and the filter 
samples used for the computation. The basepoint set is identi- 
fied  by a basepoinr index, and the filter samples are identified 
by the fractional interval. These  two pieces of information 
must be delivered to the digital interpolating structure by a 
controller. A number-controlled oscillator (NCO) can provide 
these parameters via control algorithms presented in the text. 

Because the NCO is clocked synchronously with the signal 
samples, the modem output  will exhibit timing jitter. This 
jitter is inconsequential if the data arc consumed locally to 
the modem, because the NCO can provide a symbol clock 
with the same  jitter  as the data. 

If the data must  be retransmitted synchronously, the jitter 
may be intolerable. A jitter-frce  analog clock can be recovered 
from the NCO and  used to reclock the jittered data prior to 
retransmission. 

The fictitious analog interpolating filter should be  FIR  and 
should provide good  stopband suppression of the periodic 
images of the sampled input signal. Passband response of 
this filter is part of the overall filtering of the modem. In 
consequence, non-flat response in the passband is not charged 
as distortion, as it would be in a classical interpolator. A 
designer has wide latitude in distributing overall filler response 
between the interpolating filter and other filters in the modem. 

VII. APPENDIX A: AITERNATIVE CONTROL METHOD 

D. Passband ResDonse M. Moeneclaey has pointed out an alternative control 

An ideal interpolator would pass all frequencies from 0 
to 1/2T,  with flat attenuation and with linear Dhase. In a 

scheme that does not  use an NCO. Two succcssivc 
interpolations are performed for time instants 

modem where signal filtering is lo be performed anyhow, there 
is no need for flat transmission in the filter’s passband. The 
interpolator merely contributes a portion of the filtering that 
is required for the receiver.  Any reasonable passband char- 
acteristic is permissible, provided that i t  can he  compensated 
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Subtracting  these two expressions and rearranging  slightly 
gives the recursion 

m k + l  = m k  f Ti/Ts + pk - / I ~ + I .  ( A 4  

By definition, m k + l  is an integer.  Then,  since 0 5 p k + l  < 1, 

m k + l  + p k + l  = mk + T i / T a  + / b k  < m k + 2  (-4.3) 

whence  the  increment in sample  count  from  one  interpolation 
to the next is 

mk+l - m k  = int[T,/T, + pk].  (A.4) 

Notice  that  a  practical  scheme  must  work with  the increment 
rather  than  the  sample  count m k .  Any finite-length  counter of 
m k  would  overflow  eventually. 

To compute  the  fractional  interval I l k ,  recognize that the 
fractional  part fp[ ] of the  increment is zero 

f P [ 7 ~ ~ k + l  - m k ]  = 0 = fp[z/Ts + Pk - P k + l ]  

from  which  one may conclude 

The  true T;/T, is  not  available.  Instead, the synchronizer 
produces  a  control  word V ( m k )  N Ti/T, to be used in 
the recursions (A.4) and (AS). This  control word is the 
synchronizer’s  estimate of the  true  interpolation period Ti 
relative  to  the  sampling period T,. 

The  alternative  control  method may  be most  useful  in 
systems  where  the  data  are  consumed at  the same  location 
as  the  data  receiver,  without  reclocking. It is not immediately 
apparent how a jitter-free, time-continuous  clock  for  retrans- 
mission  could be synthesized  easily  without  the  phase s(m) 
that  accumulates in an  NCO. 

ACKNOWLEDGMENT 
I wish to  thank Dr. R. Harris and L. Erup of the  European 

Space  Agency for their  helpful  critiques of the  work  as it 
progressed. 

REFERENCES 

[I] L. ENP, F. M. Gardner, and R. A. Harris, “Interpolation in digital 
mcdemsPar t  I t  implementation and performance,” to be published. 

[2] R. E. Crochiere and L. R. Rabiner, MuNirute Digital  Signal  Processing. 
Englewood Cliffs, NJ: Prentice-Hall, 1983. 

[3] R. W. Schafer and L. R. Rabiner, “A digital signal processing approach 
lo interpolation,” Proc. IEER, vol. 61, pp.  692-702, June 1973. 

[4] R. E. Crochiere, L. R. Rabiner, and  R. R. Shively, “A novel imple- 
mentation of digital phase shifters,” Bell Syst. Tech. J., vul. 54, pp. 

[SI F. Takahata et al., “A PSK group modem for satellite communication,” 
1497-1502, Oct. 1975. 

[6]  M. Oerder, G. Ascheid, R. Haeb, and H. Meyr, “An all digital implemen- 
IEEE J. Select.  Areas Commun., vol. SAC-5, pp. 648-661, May 1987. 

tation of a receiver for bandwidth efficient communication,” in Signal 
Processing III (Eusipco 1986). 1. T. Young et al. Ed., pp. 1091-1094, 

[7] G. Ascheid, M. Oerder, J. Stahl, and H. Meyr, “An all digital receiver 
Elsevier, 1986. 

architecture for bandwidth efficient transmisslon at high data rates,’’ 
IEEE  Trans. Commun., vol. 37, pp. 804-813, Aug. 1989. 

[8] J. A. C. Bingham, The Theory  and Practice of Modem Design. New 

[9] F. M. Gardner, “A BPSWQPSK timing-error detector for sampled 
York: Wiley, 1988. 

receivers,” ZEEE Trans. Commun., vol. COM-34, pp. 423-429, May 

[IO] E. Auer, “An advanced, variable data rate modem for Intelsat IDR/IBS 
1986. 

services,” Paper 1-3, Proc. 2nd Int. Workshop Digital  Signal  Procewing 
TechniquesAppL  Space Commun., Turin, Italy, 24-25 Sept. 1990. 

Floyd M. Gardner (S’49-A’54-SM’S8-F’SO) re- 
ceived the B.S.E.E. degree from the Illinois Institute 
of Technology, Chicago, IL, in 1950, the M.S.E.E. 
from Stanford University, Stanford, CA, in 1951, 

Urbana, IL, 1953. 
and thc Ph.D. degree from the University of Illinois, 

He  has  been a independent consulting engineer 
since 1960, active in the fields of communications 
and electronics. He  is a specialist in synchronization 
and in phase-lock loops, and is the author of the 

edition, 1979). In recent years he has been investigating algorithms for 
hook Phuselock Technlques (New York Wlley, 2nd 

digitally implemented modems. 
Dr. Gardner is a Registered Professional Engineer in thc State of California. 

1 


