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The sinc(), aka sinx/x, is often used to describe the sidelobe behavioral model for a tone in
the frequency domain.   The sinc() is the FT of a rectangular function for the continuous
case of the FT, and the Dirichlet kernel is the FT of the rectangular function for the discrete
sampled case.  As N, the number of samples in the transform, goes to infinity or the
sampling interval goes to zero, the Dirichlet kernel converges to the sinc() function.  

While "sinx/x" is often used as a descriptive term for the general shape of many of the
common transform window functions and is often used as the general descriptor for tone
sidelobe behavior, in this case we compare the specific differences between the values of
the sinc() function, the tone sidelobe behavior for a tone exactly between two DFT bins, and
the Dirichlet kernel.

Generate a complex-valued tone of length N:

j 1 Define the radical for engineering clarity.

N 16 Length of the vectors.

n 0 N 1 Time index for vectors.

ft 5.5 Tone frequency, in cycles/aperture, where N is the length of the
aperture.

x
n

e

j
2 π n ft

N











 Define tone samples.

k 0 N 1 Frequency index for transform output.
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 Perform a DFT.



Define sinc(x) with the exception for x = 0. This prevents a singularity at the main lobe
peak.

sinc x( ) if x 0= 1
sin x( )
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esinc k ft  sinc π k ft   Define the expected sinc() envelope considering the tone
frequency.

The full definition of the Dirichlet kernel includes parameters for the sample length of the
window, K, the length of the DFT, N, where N ≥ K, and the offset of the start of the window
from the center (origin) of the DFT, m.  For continuity with the above analysis, k is used as
the frequency index.
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For the general, non-zero-padded transform, case the window is the length of the DFT, so
that  K = N and m = (K-1)/2.  This makes the phase term for the exponential zero and
simplifies the remaining sin() ratio.

Define the magnitude of the Dirichlet kernel for a
symmetric, length N window.  Normalizing by 1/N
so that the peak is unity makes it directly
comparable with the sinx/x function.  The ft term

centers the response at that frequency.

dkern k ft N 
1

N
sin π k ft  

sin
π k ft 

N











mx
k

X
k

 Compute the magnitude of the transform.



Now the magnitude of the DFT output, expected sinc(), and Dirichlet kernel profiles can be
compared.

esinc k ft 
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

The Dirichlet kernel matches the computed DFT sidelobe magnitude more closely than the
sinc(), especially for small N.   The symmetry of the sinx/x sidelobes is preserved in all three
cases.   The sidelobe behavior in all three cases are consistent in sidelobe symmetry and
zero-crossing location.

The results can be plotted to show the differences graphically.   The difference between the
sinx/x and the realized DFT output sidelobe levels increases with distance from the main
lobe.  
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Rescaling the above plot with the vertical axis on a log scale helps to show that the
difference in the sidelobe levels is consistent with the circular convolution of the window
function with the tone, which the sinc() function is not subject to in the continuous case.
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Below the error of the sinx/x to the realized sidelobe magnitude is shown as a function of
frequency.   The error is minimum around the main lobe and increases with distance from
the main lobe.  Again, this is consistent with the sidelobe profile being circular in the
discrete case and linear in the continuous case.
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As N increases the period of the Dirichlet kernel increases, which reduces the difference
with the sinc() function in sidelobe profile.   The difference at the main lobe decreases as
well.

N 1024 Length of the vectors.

n 0 N 1 Time index for vectors.

ft 250.5 Tone frequency, in cycles/aperture, where N is the length of the
aperture.
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 Define tone samples.

k 0 N 1 Frequency index for transform output.
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 Perform a DFT.
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 Compute the magnitude of the transform.

esinc k ft 
-31.271·10
-31.276·10
-31.281·10
-31.286·10
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-31.329·10
...

 dkern k ft N 
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The plot below shows the large-N output zoomed-in around the peak.
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Even twenty samples on either side of the main lobe the errors are small.  The same
plot is shown below with a log scale on the vertical axis.
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The plot below shows the error between the sinc() profile and the DFT magnitude output.  The
error at the main lobe samples is ~2.5e-7, or -66dBc.
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Analysis

Since DFT analysis of tones is usually focused on the behavior around the main lobe, the
general model for DFT sidelobe behavior with a rectangular winodw is often the sinx/x or
sinc() function.   While this model is accurate for non-small values of N, the error in
sidelobe magnitude increases with the distance from the main lobe.  As N decreases or
analysis interest away from the main lobe increases, the Dirichlet kernel provides a more
accurate model for sidelobe magnitude.

Since the Dirichlet kernel is a sinx/x resampled in the frequency domain, the function is
circular over the length of the transform.   For this reason the Dirichlet kernel is sometimes
called the "aliased sinc" or "aliased sinx/x" where the function can be thought of as being
periodic with the length of the transform.

Reference: 

R. Lyons, "Understanding Digital Signal Processing," 2nd Ed., Prentice-Hall, 2004 

Note: FWIW, Rick's book is one of the few places where a proper discrete-domain treatment of
the Dirichlet kernel can be found.



Appendix A

In order to show the circular, or repetitive nature of the Dirichlet kernel and the linear nature of
the sinc() function, we can re-create the short-vector version of the tone (since it got nuked in
the large-N example above).

N 16 Length of the vectors.

n 0 N 1 Time index for vectors.

ft 5.5 Tone frequency, in cycles/aperture, where N is the length of the
aperture.
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 Define tone samples.

k 0 N 1 Frequency index for transform output.
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 Perform a DFT.
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X
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 Compute the magnitude of the transform.

Now extend the frequency range for N additional samples in either direction.

k2 N 1( ) 2 N 1( )

mx2 k2( ) if k2 0 0 if k2 N mx
k2

 0  

The result shows three periods of the Dirichlet kernel, and the sinc() function extending,
linearly, in either direction.
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As in the case described above in the main text, the difference is somewhat more
apparent with a log scale on the vertical axis.

20 10 0 10 20 30
0.01

0.1

1

DFT Output and Models

Frequency Index

L
og

 A
m

pl
it

ud
e 

(P
ea

k 
=

 1
)

mx2 k2( )

esinc k2 ft 
dkern k2 ft N 

k2


